514 research outputs found

    Secondary aerosol formation from atmospheric reactions of aliphatic amines

    Get PDF
    Although aliphatic amines have been detected in both urban and rural atmospheric aerosols, little is known about the chemistry leading to particle formation or the potential aerosol yields from reactions of gas-phase amines. We present here the first systematic study of aerosol formation from the atmospheric reactions of amines. Based on laboratory chamber experiments and theoretical calculations, we evaluate aerosol formation from reaction of OH, ozone, and nitric acid with trimethylamine, methylamine, triethylamine, diethylamine, ethylamine, and ethanolamine. Entropies of formation for alkylammonium nitrate salts are estimated by molecular dynamics calculations enabling us to estimate equilibrium constants for the reactions of amines with nitric acid. Though subject to significant uncertainty, the calculated dissociation equilibrium constant for diethylammonium nitrate is found to be sufficiently small to allow for its atmospheric formation, even in the presence of ammonia which competes for available nitric acid. Experimental chamber studies indicate that the dissociation equilibrium constant for triethylammonium nitrate is of the same order of magnitude as that for ammonium nitrate. All amines studied form aerosol when photooxidized in the presence of NOx with the majority of the aerosol mass present at the peak of aerosol growth consisting of aminium (R3NH+) nitrate salts, which repartition back to the gas phase as the parent amine is consumed. Only the two tertiary amines studied, trimethylamine and triethylamine, are found to form significant non-salt organic aerosol when oxidized by OH or ozone; calculated organic mass yields for the experiments conducted are similar for ozonolysis (15% and 5% respectively) and photooxidation (23% and 8% respectively). The non-salt organic aerosol formed appears to be more stable than the nitrate salts and does not quickly repartition back to the gas phase

    Development and application of a parallelized version of the advanced modeling system for transport, emissions, reactions and deposition of atmospheric matter (AMSTERDAM): 2. Source region contributions

    Get PDF
    AbstractThe Advanced Modeling System for Transport, Emissions, Reactions and Deposition of Atmospheric Matter (AMSTERDAM) is an adaptation of the Community Multiscale Air Quality Model (CMAQ) that includes an advanced Plumeā€“inā€“Grid (PinG) Treatment for resolving subā€“grid scale processes associated with emissions from elevated point sources. A companion paper describes the parallelization of AMSTERDAM to make it a practical tool for PinG treatment of a large number of point sources, and the performance evaluation of the model for summer and winter periods in 2002. In this paper, we describe how the PinG treatment for large coalā€“fired Electric Generating Units (EGUs) affects model predictions of the ozone, particulate matter and sulfur and nitrogen deposition impacts from these sources using a number of emission control scenarios. The study examines the regional contributions of EGUs and nonā€“EGU anthropogenic emissions from a ā€œpseudoā€“stateā€ source region defined around the center of the modeling domain. The pseudoā€“state region contribution studies are useful to understand interā€“state and longā€“range transport of both primary and secondary pollutants. The results from these model applications show substantial differences between the PinG and nonā€“PinG configurations of AMSTERDAM in their predictions of the magnitudes and spatial extents of EGU contributions to ambient ozone and PM2.5 concentrations. They also show that nonā€“EGU anthropogenic emissions are the key contributors to ozone and PM2.5 concentrations and nitrogen deposition in neighboring states

    Development and application of a parallelized version of the advanced modeling system for transport, emissions, reactions and deposition of atmospheric matter (AMSTERDAM): 1. Model performance evaluation and impacts of plumeā€“inā€“grid treatment

    Get PDF
    AbstractThe Community Multiscale Air Quality Model (CMAQ) is a comprehensive threeā€“dimensional ā€œoneā€“atmosphereā€ air quality model that is now routinely used to address urban, regionalā€“scale and continentalā€“scale multiā€“ pollutant issues such as ozone, particulate matter, and air toxics. Several updates have been made to CMAQ by the scientific community to enhance its capabilities and to provide alternative science treatments of some of the relevant governing processes. The Advanced Modeling System for Transport, Emissions, Reactions and Deposition of Atmospheric Matter (AMSTERDAM) is one such adaptation of CMAQ that adds an Advanced Plumeā€“inā€“grid Treatment (APT) for resolving subā€“grid scale processes associated with emissions from elevated point sources. It also incorporates a stateā€“ofā€“theā€“science alternative treatment for aerosol processes based on the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID). AMSTERDAM is configured to provide flexibility to the model user in selecting options for the new science modules. This paper describes the parallelization of AMSTERDAM to make it a practical tool for plumeā€“inā€“grid (PinG) treatment of a large number of point sources, and presents results from its application to the central and eastern United States for summer and winter periods in 2002. Over 150 coalā€“fired power plants in the domain with high emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) were selected for PinG treatment in the CMAQā€“MADRIDā€“APT configuration of AMSTERDAM used for this application. Although both model configurations (gridā€“only and PinG) give similar model performance results (an aggregate measure of model skill), the results show significant differences between the two versions in the specific nature of the predicted spatial distribution of ozone and PM2.5 concentrations. These differences can be important in determining source contributions to ambient concentrations. A companion paper examines the differences in the predicted contributions of hypothetical source regions from the two configurations of the model

    Influence of aerosol acidity on the chemical composition of secondary organic aerosol from Ī²-caryophyllene

    Get PDF
    The secondary organic aerosol (SOA) yield of Ī²-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of Ī²-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three Ī²-caryophyllene products (i.e., Ī²-nocaryophyllon aldehyde, Ī²-hydroxynocaryophyllon aldehyde, and Ī²-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for Ī²-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS)

    Kiruna-Type Iron Oxide-Apatite (IOA) and Iron Oxide Copper-Gold (IOCG) Deposits Form by a Combination of Igneous and Magmatic-Hydrothermal Processes: Evidence from the Chilean Iron Belt

    Get PDF
    Iron oxide copper-gold (IOCG) and Kiruna-type iron oxide-apatite (IOA) deposits are commonly spatially and temporally associated with one another, and with coeval magmatism. Here, we use trace element concentrations in magnetite and pyrite, Fe and O stable isotope abundances of magnetite and hematite, H isotopes of magnetite and actinolite, and Re-Os systematics of magnetite from the Los Colorados Kiruna-type IOA deposit in the Chilean iron belt to develop a new genetic model that explains IOCG and IOA deposits as a continuum produced by a combination of igneous and magmatic-hydrothermal processes. The concentrations of [Al + Mn] and [Ti + V] are highest in magnetite cores and decrease systematically from core to rim, consistent with growth of magnetite cores from a silicate melt, and rims from a cooling magmatic-hydrothermal fluid. Almost all bulk Ī“ 18 O values in magnetite are within the range of 0 to 5ā€°, and bulk Ī“ 56 Fe for magnetite are within the range 0 to 0.8ā€° of Fe isotopes, both of which indicate a magmatic source for O and Fe. The values of Ī“ 18 O and Ī“D for actinolite, which is paragenetically equivalent to magnetite, are, respectively, 6.46 Ā± 0.56 and-59.3 Ā± 1.7ā€°, indicative of a mantle source. Pyrite grains consistently yield Co/Ni ratios that exceed unity, and imply precipitation of pyrite from an ore fluid evolved from an intermediate to mafic magma. The calculated initial 187 Os/ 188 Os ratio (Osi) for magnetite from Los Colorados is 1.2, overlapping Osi values for Chilean porphyry-Cu deposits, and consistent with an origin from juvenile magma. Together, the data are consistent with a geologic model wherein (1) magnetite microlites crystallize as a near-liquidus phase from an intermediate to mafic silicate melt; (2) magnetite microlites serve as nucleation sites for fluid bubbles and promote volatile saturation of the melt; (3) the volatile phase coalesces and encapsulates magnetite microlites to form a magnetite-fluid suspension; (4) the suspension scavenges Fe, Cu, Au, S, Cl, P, and rare earth elements (REE) from the melt; (5) the suspension ascends from the host magma during regional extension; (6) as the suspension ascends, originally igneous mag-netite microlites grow larger by sourcing Fe from the cooling magmatic-hydrothermal fluid; (7) in deep-seated crustal faults, magnetite crystals are deposited to form a Kiruna-type IOA deposit due to decompression of the magnetite-fluid suspension; and (8) the further ascending fluid transports Fe, Cu, Au, and S to shallower levels or lateral distal zones of the system where hematite, magnetite, and sulfides precipitate to form IOCG deposits. The model explains the globally observed temporal and spatial relationship between magmatism and IOA and IOCG deposits, and provides a valuable conceptual framework to define exploration strategies

    Intestinal parasites from public and private latrines and the harbour canal in Roman Period Ephesus, Turkey (1st c. BCE to 6th c. CE)

    No full text
    To improve our knowledge of the parasite species affecting the inhabitants of Roman period Asia Minor, we analysed faecal material from Ephesus, Turkey. Mineralised material from the drain from a private house latrine (3rd c. CE), sediment samples from the sewer drain of a public communal latrine (6th c. CE), and sediment from the harbour canal (ca. 1st c. BCE to ca. 6th c. CE) were studied for the presence of intestinal parasites. Samples were viewed by light microscopy for helminth eggs, and commercial enzyme-linked immunosorbent assay (ELISA) kits were used to test for protozoal parasites that cause dysentery. Eggs of roundworm were found in the public latrine, whipworm in the house latrine, and both whipworm and roundworm in the harbour canal. Sequential sampling of the harbour core suggests that whipworm was by far the most common parasite throughout the Roman period, and there was no clear evidence for change in parasite species over the centuries. Whipworm and roundworm are both spread by the contamination of food and drink by human faeces. Despite the large number of travellers to Ephesus, as the capital of its province and a major port city in the Roman Empire, there was a surprising lack of diversity in parasite species found. This is especially apparent when we consider that ten species of intestinal parasite have been found across the Roman Empire. This is the first Roman site to be directly assessed for differences between infection in individuals using private latrines, public latrines, and mixed town effluent (in the harbour) at the same site.This research was supported by a doctoral award from the Social Sciences and Humanities Research Council of Canada [752-2016-2085] and a Tidmarsh Cambridge Scholarship from the Cambridge Commonwealth, European and International Trust and Trinity Hall Colleg

    Characterization and Quantification of Isoprene-Derived Epoxydiols in Ambient Aerosol in the Southeastern United States

    Get PDF
    Isoprene-derived epoxydiols (IEPOX) are identified in ambient aerosol samples for the first time, together with other previously identified isoprene tracers (i.e., 2-methyltetrols, 2-methylglyceric acid, C5-alkenetriols, and organosulfate derivatives of 2-methyltetrols). Fine ambient aerosol collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS) was analyzed using both gas chromatography/quadrupole mass spectrometry (GC/MS) and gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) with prior trimethylsilylation. Mass concentrations of IEPOX ranged from ~1 to 24 ng m^(āˆ’3) in the aerosol collected from the two sites. Detection of particle-phase IEPOX in the AMIGAS samples supports recent laboratory results that gas-phase IEPOX produced from the photooxidation of isoprene under low-NO_x conditions is a key precursor of ambient isoprene secondary organic aerosol (SOA) formation. On average, the sum of the mass concentrations of IEPOX and the measured isoprene SOA tracers accounted for about 3% of the organic carbon, demonstrating the significance of isoprene oxidation to the formation of ambient aerosol in this region

    Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    Get PDF
    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (~350. Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850. Ā°C). Smaller inclusions (500. ppm) concentrations

    Serum biomarkers for allergy in children

    Get PDF
    A large number of studies investigating various biomarkers for allergy have been published over the past decades. The aim of this review was to evaluate these biomarkers on their diagnostic and/or predictive value. To this date, no single or specific biomarker for allergy has been identified. As allergy is not one disease, but a collection of a number of allergic conditions, it is more plausible a combination of clinical history, clinical readouts, and diagnostic markers will be needed
    • ā€¦
    corecore